
Bitmatrix: A Constant Product Market Maker
Based on Recursive Covenants

Burak Keceli
burak@bitmatrix.app

Bitmatrix is a constant product market maker built on Liquid Network, which utilizes the power of
bitcoin opcodes to enable automated liquidity provision across L-BTC and other Liquid assets.

1. Introduction
Bitmatrix is a covenant-based AMM protocol where users can create their pool, add liquidity to an
existing pool, or swap two assets. A Bitmatrix pool is made of covenants that interoperate and
enforce constraints, resulting in a fully-functional AMM based on the UTXO model. Bitmatrix users
can interact with pools across multiple front-ends, such as the web-based Bitmatrix interface, a
mobile device, or an Elements node. Whether swapping two assets or adding or removing
liquidity, numerous users can asynchronously transact regardless of the type of interaction.

A Bitmatrix interaction involves three subsequent transactions;

1. Funding transaction
2. Commitment transaction
3. Pool transaction

The funding and commitment transactions are created and broadcasted altogether, forming an
unconfirmed parent-child chain. Outputs from commitment transactions are constrained to one
block relative locktime, making them spendable in pool transactions once they are confirmed. This
measure is taken to avoid attack vectors related to transaction pinning. Given deterministic
one-minute blocks in Liquid, a Bitmatrix interaction can take one to two minutes to finalize,
depending on when the interaction is attempted.

2. Funding Transaction
A Funding Transaction is signed and broadcasted by the user’s wallet upon attempting to swap
two assets or add/remove liquidity over a Bitmatrix pool. A Funding Transaction can come with
various wallet inputs and change outputs but must construct two exact funding outputs to spend in
the subsequent commitment transaction.

2.1 Commitment Transaction Output Template
A template of Commitment Transaction outputs is mapped out before constructing a Funding
Transaction. It’s a 309-byte construction made of 11 items concatenated end to end. A single
SHA256 of the entire bytedata is named “Commitment Transaction Output Template Hash”.

Items Bytes

Calldata [OP_RETURN] scriptPubKey 81

Calldata [OP_RETURN] amount 8

Calldata [OP_RETURN] asset ID 32

Commitment output 1 [P2TR] scriptPubKey 34

Commitment output 1 [P2TR] amount 8

Commitment output 1 [P2TR] asset ID 32

Commitment output 2 [P2TR] scriptPubKey 34

Commitment output 2 [P2TR] amount 8

Commitment output 2 [P2TR] asset ID 32

Transaction fee amount 8

Transaction fee asset ID 32

2.2 Funding Outputs
Funding output 1 and Funding output 2 are P2TR constructions whose tapscript constrain both
outputs to a pre-defined commitment transaction output template hash:

//Inspect 1st output
<0> INSPECTOUTPUTSCRIPTPUBKEY <0> INSPECTOUTPUTVALUE <0> INSPECTOUTPUTASSET

//Inspect 2nd output
<1> INSPECTOUTPUTSCRIPTPUBKEY <1> INSPECTOUTPUTVALUE <1> INSPECTOUTPUTASSET

//Inspect 3rd output
<2> INSPECTOUTPUTSCRIPTPUBKEY <2> INSPECTOUTPUTVALUE <2> INSPECTOUTPUTASSET

//Inspect fee output
<3> INSPECTOUTPUTVALUE <3> INSPECTOUTPUTASSET

//Compute Commitment Transaction Output Template Hash
CAT CAT CAT SHA256

//Compare computed hash to stored hash
<Commitment Transaction Output Template Hash> EQUAL

The script TapLeaf should be tweaked with users’ recovery key in case a commitment transaction
template is somehow non-constructible. scriptPubKeys of funding output 1 and funding output 2
are accordingly created to contain the final tweaked result. The funding transaction is signed and
broadcasted afterward.

3. Commitment Transaction
A commitment transaction commits to reserving a slot in a pool transaction. It’s made of a
standardized construction of 2 inputs and 4 outputs. The two funding outputs from the funding
transaction are spent in the commitment transaction while no additional inputs are permitted. A
commitment transaction is made of two commitment outputs, namely commitment output 1 and
commitment output 2. Plus an OP_RETURN and a fee output.

Commitment output 1 carries L-BTC supply at all times, in contrast to commitment output 2 whose
asset type depends on the type of interaction:

Case Commitment Output 1 Asset Commitment Output 2 Asset

Swap L-BTC for Token L-BTC (fees + supply) L-BTC (dust)

Swap Token for L-BTC L-BTC (fees) Token (supply)

Add Liquidity L-BTC (fees + supply) Token (supply)

Remove Liquidity L-BTC (fees) LP (supply)

3.2 Calldata
The first output of every commitment transaction is an OP_RETURN followed by a 78-byte
PUSHDATA called Calldata. Aggregator nodes parse this data to interpret how to spend
commitment outputs in a pool transaction. The 78-byte push is a concatenation of 5 items:

Calldata Items Bytes

Target Flag Asset ID 32

Method Call 1

Recipient Public Key 33

Slippage Tolerance 8

Ordering Fees 4

3.2.1 Target Flag Asset ID
The first item in Calldata is a 32-byte Target Flag Asset ID indicating the destination pool
transaction where commitment outputs are made only spendable. As each Bitmatrix trading pair
runs on different pool transactions, and each pool transaction is identifiable via a unique flag
asset, commitment outputs are constrained to the target pool’s flag asset ID.

3.2.2 Method Call
The second item in Calldata is a single-byte Method Call indicating the type of interaction the user
is aiming for with the Bitmatrix pool. Associated bytecodes are as follows:

Method Types Bytecode

Swap L-BTC for Token 0x01

Swap Token for L-BTC 0x02

Add Liquidity 0x03

Remove Liquidity 0x04

3.2.3 Recipient Public Key
The third item in Calldata is a 33-byte compressed public key used to represent;

1. Settlement Output Witness Program
Recipient Public Key is encoded in a P2WSH construction where Settlement Outputs in pool
transaction live in:

<0x01000000> CHECKSEQUENCEVERIFY <Recipient Public Key> CHECKSIG

The script enforces one block relative locktime to avoid reverse transaction pinning attacks that
will later be explained in the paper. A v0 P2WSH witness program is preferred since a much less
efficient script-path must be followed if this otherwise was a v1 P2TR witness program.

2. Recovery key
Recipient Public Key is encoded in a timeout path where Commitment Outputs in commitment
transactions live (in section 3.3).

3.2.4 Slippage Tolerance
The fourth item in Calldata is an 8-byte Slippage Tolerance indicating the minimum amount of
swap amount users can receive where anything below gets programmatically canceled. Slippage
tolerance must be a valid script number and is set to 0x0000000000000000 if the method call is a
non-swap type (0x03 or 0x04).

3.2.5 Ordering Fees
The sixth item in Calldata is a 4-byte ordering fees field indicating the amount of sats users are
offering to reserve a slot in pool transaction. Commitment outputs in pool transactions are ordered
according to a fee market which is determined by ordering fees. Ordering fees is a signed 32-bit
integer and must be greater than 1.

3.3 Commitment Outputs
Commitment output 1 and output 2 are P2TR constructions whose Tapscript constrain both
outputs to a Target Flag Asset ID in a success case and a Recipient Public Key in a timeout case.
The following TapScript is given to commitment outputs:

//Success path:
IF
<0x01000000> CHECKSEQUENCEVERIFY
<0> INSPECTINPUTASSET <Target Flag Asset ID> EQUAL

//Timeout path:
ELSE
<0> INSPECTINPUTASSET <Target Flag Asset ID> EQUAL NOT VERIFY
<0x3c000000> CHECKSEQUENCEVERIFY
<Recipient Public Key> CHECKSIG
ENDIF

The script compiles to bytecode (variables surrounded with square brackets):

0x630401000000b200c820[TargetFlagAssetID]876700c820[TargetFlagAssetID]879169043c000000b221[
RecipientPublicKey]ac68

The script TapLeaf is tweaked with a point with an unknown discrete logarithm to eliminate a
key-path spend:

0x021dae61a4a8f841952be3a511502d4f56e889ffa0685aa0098773ea2d4309f624

A P2TR witness program is created from the final tweaked key result and is given to both
Commitment output 1 and Commitment output 2 scriptPubkeys.

3.1 Tapscript Mask
In order to inspect user-provided P2TR commitment inputs further in pool transaction, tapscript
bytedata for each input is provided in witness. Inside the main covenant script, each tapscript
bytedata from the witness is tweaked with a pre-determined internal key with an unknown discrete
logarithm to match the tweaked keys in previous scriptPubkeys.

The witness script applies a bitwise AND between the encoded tapscript Mask and each tapscript
bytedata and compares the result to tapscript bytedata themselves.

Replacing [RecipientPublicKey] of script bytedata with 0xff
yields a tapscript Mask to be harcoded in main covenant script:

0x630401000000b200c820[FLAG_ASSET_ID]876700c820[FLAG_ASSET_ID]879169043c000000b221fff
fffac68

4 Pool Transaction
Pool Transaction is the main transaction where each interaction is executed in a global state. User
commitment outputs are spent in this transaction as they commit to reserving a slot. These
outputs are of the type anyone-can-spend and can collectively be spent.

A Pool Transaction includes 4 covenant spends on the input side and 4 new covenant
constructions on the output side, each from index #0 to index #4. A transaction fee and service
fee output are placed at the bottom, with varying slots in between.

Each slot is made of two commitment inputs and two settlement outputs. Slots are ordered
according to a fee market but are ordered lexicographically when they offer the same fee.

In order to avoid unconfirmed transaction chain forks in mempool to achieve a global state of a
pool transaction, all covenants inside the pool transaction enforce one state transition per block.
This is so that a new pool state transition is not valid until one block has elapsed since the
previous pool state transition confirms.

4.1 Flag Holder Covenant
Flag holder covenant is a special type of covenant carrying a unique asset called Flag Asset with
one unit supply and 0 precision. A flag asset is issued before pool creation and given to the Flag
holder covenant at the point of pool creation. All three other covenants, Main covenant, Token
holder covenant, and LP holder covenant, are constrained to Flag Asset ID and therefore made
only spendable in the presence of Flag holder covenant. Flag holder covenant is spent at the
input index #0 and re-constructed at the output index #0. The covenant TapScript is as follows:

//Make sure it's spent at the input index #0
PUSHCURRENTINPUTINDEX <0> EQUALVERIFY

//Make sure its re-constructed at the output index #0
PUSHCURRENTINPUTINDEX INSPECTINPUTASSET <0> INSPECTOUTPUTASSET EQUALVERIFY

//Make sure Token holder covenant, LP holder covenant, and Main covenant are included
<0> INSPECTINPUTOUTPOINT <0x00000000> EQUALVERIFY DUP DUP
<1> INSPECTINPUTOUTPOINT <0x01000000> EQUALVERIFY EQUALVERIFY
<2> INSPECTINPUTOUTPOINT <0x02000000> EQUALVERIFY EQUALVERIFY
<3> INSPECTINPUTOUTPOINT <0x03000000> EQUALVERIFY EQUALVERIFY

4.2 Token Holder Covenant
Token holder covenant carries Token liquidity as a pair to L-BTC liquidity held by main covenant.
It’s always spent at the input index #1 and re-constructed at the output index #1. Its TapScript
constrain funds to target asset ID:

//Make sure it’s spent at the input index #1
PUSHCURRENTINPUTINDEX <1> EQUALVERIFY

//Make sure its constrained to a target asset ID
<0> INSPECTINPUTASSET <0x01> EQUALVERIFY <Target Asset ID> EQUALVERIFY

4.3 LP Holder Covenant
LP holder covenant carries a pool of pre-minted LP tokens. When liquidity is added, LP tokens are
given to liquidity providers proportional to added liquidity. When liquidity is removed, LP tokens
are redeemed back to the pool proportional to removed liquidity. LP holder covenant is always
spent at input index #2 and re-constructed at output #2. It’s TapScript constraining funds to flag
asset ID:

//Make sure it's spent at the input index #2
PUSHCURRENTINPUTINDEX <2> EQUALVERIFY

//Make sure its constrained to a target asset ID
<0> INSPECTINPUTASSET <0x01> EQUALVERIFY <Target Asset ID> EQUALVERIFY

Flag holder covenant, Token holder covenant, and LP holder covenant TapScripts are all tweaked
with a point with an unknown discrete logarithm to eliminate a key-path spend:

0x021dae61a4a8f841952be3a511502d4f56e889ffa0685aa0098773ea2d4309f624

4.4 Main Covenant
The main covenant inside a pool transaction is a custom P2TR witness program that commits to a
32-leaf MAST construction. Each leaf index reflects the number of concurrent user calls in that
leaf spend. As the number of leaves is bounded by 32 and given one-minute blocks in Liquid, a
Bitmatrix pool can process up to 32 interactions per minute or 0.53 interactions per second.

When constructing MAST, script bytedata for a single slot is compiled 32 times, each time
re-adding itself endwise the times of leaf index. When spending the main covenant, a 193-byte
control block is mapped out for a leaf that accommodates the number of concurrent interactions
that exist in that period. Lower index leaves can be replaced with higher index leaves when the
number of concurrent user calls is less than 32. When the number of concurrent user calls hits 32
or greater, an internal fee market occurs, and therefore original versions of a 32nd leaf spend can
be replaced with newer versions of a 32nd leaf spend.

4.4.1 Concurrency
By leveraging Tapscript (BIP 342), Relative lock-time (BIP 68), and Replace-by-fee (BIP 125),
multiple users can asynchronously interact with a Bitmatrix pool in a fully on-chain logic.

4.4.1.1 Replacement Logic
A built-in replacement logic enforced by the Bitcoin script when leveraged with BIP-125 allows
concurrent users to compete over a fee market to reserve a slot in a 32-seat pool transaction.

The four base covenants in a pool transaction and all user-provided inputs signal replaceability.
This is so that anyone can submit newer versions of a pool transaction within a minute as long as
paying a greater absolute fee plus their bandwidth according to BIP-125. Since commitment
inputs are of-type anyone-can-spend, any Elements node can monitor the network and order user
calls according to a fee market based on how much fee each offers.

Based on parameters;

I. is the base fee amount that must be paid by every user set to 1200 sats.𝑏

II. is the ordering fee a user can offer varying from 1 to 2147482647 sats.𝑜

III. is the maximum number of slots available in a Pool Transaction set to 32 seats.𝑚

IV. is the present number of reserved slots (user calls) in a Pool Transaction bounded by𝑐 𝑚

V. is the vByte-length gap between two subsequent leaves in witness and base txn, set to𝑔

560 vBytes = 230 base bytes + 193 script body vBytes + 136 stack element vBytes.

VI. is the number of vBytes single-leaf pool spend consumes, set to vBytes.𝑠 1377

VII. is the default Elements minimum relay fee set to 10 vByte/sat (0.1 sat/vByte).𝑟

Fees paid by the transaction fee output is calculated as = . The𝑓𝑝
𝑛 = 𝑜1

𝑜𝑐

∑ 𝑛 + 𝑏

3 +
𝑛 = 𝑜1

𝑜𝑐

∑ 𝑛 + 𝑏() * 2 * 𝑐

3 * 𝑚
formula is based on allowing newer versions of pool transactions to be replaced with original

versions. Given the total fees offered by all users = , the remaining fees are paid𝑓𝑡
𝑛 = 𝑜1

𝑜𝑐

∑ 𝑛 + 𝑏

extra to service fee output . .𝑓𝑟 = 𝑓𝑡 − 𝑓𝑝

The fourth rule of BIP-125 requires that the replacement transaction must pay for its bandwidth at
or above the rate set by the node’s minimum relay fee setting.

A replacement Pool Transaction at index bounded by ;𝑐 𝑚

● Pays for bandwidth =Δ𝑏 𝑛 = 𝑜1

𝑜𝑐

∑ 𝑛 + 𝑏

3 − 𝑛 = 𝑜(𝑐−1)

𝑜(𝑐−1)

∑ 𝑛 + 𝑏

3 + 𝑛 = 𝑜1

𝑜𝑐

∑ 𝑛 + 𝑏() *2 *𝑐

3 * 𝑚 − 𝑛 = 𝑜(𝑐−1)

𝑜(𝑐−1)

∑ 𝑛 + 𝑏() *2 *𝑐

3 * 𝑚

● Must pay for bandwidth 𝑏𝑝 = 𝑠 + (𝑐−1)*𝑔
𝑟

Given hardcoded values , , and the statement is true at all𝑚 = 32 𝑟 = 10 𝑏 = 1000 Δ𝑏 > 𝑏𝑝
times when is true. An internal fee market competition occurs when becomes true.𝑐 < 𝑚 𝑐 = 𝑚

4.4.2 Spend Structure
A single main covenant spend takes a 193-byte control block at the bottom, a varying-size witness
script, and a varying number of slot inputs that satisfy the witness script, each taking 3 stack
elements. Therefore the main covenant spend has a witness element count of for a2 + 3𝑛
value of that is an integer between 1 and 32.𝑛

Slot Witness Elements

Slot 1 Stack Elements (136-vBytes)

Commitment Transaction Base Bytedata 418-bytes

Commitment Input Script Bytedata 124-bytes

Commitment Input Tweaked Key Prefix 1-byte

.

.

Slot N Stack Elements (136-vBytes)

Witness Script

Header
Hardcoded Values

Body

Slot 1

Commitment Input Inspection

Commitment Transaction Inspection

Method Call Preparation

L-BTC For Token Case

Swap Token For L-BTC Case

Add Liquidity Case

Remove Liquidity Case

.

.

Slot N

Footer
Final inspection

Control Block 193-bytes

4.4.2.2 Slot Witness Elements
Each slot in the main covenant spend takes 3 stack elements, summing at 135.75-vBytes:

Hardcoded values Bytes

Commitment Transaction Base Bytedata 418

Commitment Input Tapscript Bytedata 124

Commitment Input Tweaked Key Prefix 1

- BEGIN SLOT N STACK ELEMENTS -
.
.

- END SLOT N STACK ELEMENTS -
.
.

- BEGIN SLOT 1 STACK ELEMENTS -

//Commitment Transaction Base Bytedata
<418-bytes>

//Commitment Input Tapscript Bytedata
<124-bytes>

//Commitment Input Tweaked Key Prefix
<0x02 or 0x03>

- END SLOT 1 STACK ELEMENTS -

4.4.2.2.1 Commitment Transaction Base Bytedata
Non-witness bytedata of a standardized 419-base-byte commitment transaction is provided in
witness. The witness script inspects transaction bytedata to read calldata within the serialization.

4.4.2.2.2 Commitment Input Script Bytedata
The tapscript bytedata of a commitment input is provided in witness. The witness script inspects
the tapscript bytedata to avoid potential pinning attacks.

4.4.2.2.3 Commitment Input Tweaked Key Prefix
A TWEAKVERIFY operation is used to verify the authenticity of inspected tapscript. In order to
input the tweaked key into TWEAKVERIFY, the commitment input scriptPubkey is inspected, and
the 32-byte witness program is parsed. However, tweaked keys’ one-byte prefix is unknown over
introspection and is therefore provided in witness. The 32-byte witness program is concatenated
with Commitment Input Tweaked Key Prefix to construct the full 33-byte tweaked key.

4.4.2.3 Witness Script
The main covenant witness script is a varying-size expressive tapscript that validates the correct
execution of each slot. Witness script is divided into three parts for better conceptualizing:

1. Witness Script Header
2. Witness Script Body
3. Witness Script Footer

4.4.2.3.1 Witness Script Header
The script header starts with six values hardcoded at the beginning of the witness script. The
values are used in certain operations taking place in the script body.

Hardcoded values Bytes

L-BTC Asset ID 32

Token Asset ID 32

Commitment Input TapScript Mask 124

A point with an unknown discrete logarithm 32

The string “TapLeaf” 7

The string “TapTweak” 8

- BEGIN SCRIP HEADER -

//L-BTC Asset ID
<0x6d521c38ec1ea15734ae22b7c46064412829c0d0579f0a713d1c04ede979026f>

//Token Asset ID
<0x[TOKEN_ASSET_ID]>

//Commitment Input TapScript Mask
<0x630401000000b200c820[FLAG_ASSET_ID]876700c820[FLAG_ASSET_ID]879169043c000000b221
ffac68>

//A point with an unkown discreet logarithm
<0x1dae61a4a8f841952be3a511502d4f56e889ffa0685aa0098773ea2d4309f624>

//The string “TapLeaf” in bytes
<0x5461704c656166>

//The string “TapTweak” in bytes
<0x546170547765616b>

.

//Inspect number of inputs
INSPECTNUMINPUT

//Constrain number of inputs
<Number of inputs in respective leaf spend> EQUALVERIFY

//Inspect number of outputs
INSPECTNUMOUTPUT

//Constrain number of outputs
<Number of outputs in respective leaf spend> EQUALVERIFY

//Constrain main covenant to a target asset ID
<0> INSPECTINPUTASSET <0x01> EQUALVERIFY <Target Asset ID> EQUALVERIFY

//Inspect pool L-BTC supply
<3> INSPECTINPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Send pool L-BTC supply to altstack
TOALTSTACK

//Inspect pool Token supply
<1> INSPECTINPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Send pool Token supply to altstack
TOALTSTACK

//Inspect pool LP supply and verify the prefix(1)
<2> INSPECTINPUTVALUE <0x01> EQUALVERIFY

//Send pool LP supply to altstack
TOALTSTACK

//Send int 0 (total tx fees) to altstack
<0> TOALTSTACK

//Send max 32-bit signed int to altstack (to compare 1.st index ordering fee)
<2147483647> TOALTSTACK

- END SCRIP HEADER -

4.4.2.3.2 Witness Script Body
The witness script header is followed by a varying-size witness script body making the most
critical part of the overall covenant design. The witness script body hosts script enforcements for
each slot. It can accommodate a minimum of 1 and a maximum of 32 slots which are serialized
end-to-end and executed in order. Each slot block consists of 4 parts:

1. Commitment Input TapScript Inspection
2. Commitment Transaction Calldata Inspection
3. Method Call Preparations
4. Method Call Cases

4.4.2.3.2.1 Commitment Input Inspection
The witness-provided commitment input tapscript bytedata is inspected to match a pre-defined
script pattern (Tapscript mask). A TWEAKVERIFY operation is used to verify that commitment
input tapscript bytedata really commits to scriptPubKeys of commitment inputs:

- BEGIN SCRIP BODY -

- BEGIN SLOT 1 -

//Calculate TapLeaf given script bytedata
<1> PICK SHA256 DUP CAT <0xc0> CAT <7> PICK SIZE SWAP CAT CAT SHA256

//Calculate TapTweak given hardcoded internal key and TapLeaf
<1> PICK SHA256 DUP CAT <4> PICK <2> ROLL CAT CAT SHA256

<3> PICK SWAP <8> ROLL

//Make sure commitment inputs share the same scriptPubkey, and inspect their tweaked key
<3+N> INSPECTINPUTSCRIPTPUBKEY DUP <4+N> INSPECTINPUTSCRIPTPUBKEY EQUALVERIFY

//Verify witness version 1
<1> VERIFY

//TweakVerify given hardcoded internal key, TapLeaf, and inspected tweaked key
TWEAKVERIFY

//A bitwise AND between TapScript Mask and each tapscript bytedata from the witness are computed,
and the result is compared to each tapscript bytedata.
<6> ROLL DUP <5> PICK AND EQUALVERIFY

//Fetch commitment input 1 outpoints and verify their output index
<N> INSPECTINPUTOUTPOINT <0x01000000> EQUALVERIFY DUP

//Fetch commitment input 2 outpoints and verify their output index
<N+1> INSPECTINPUTOUTPOINT <0x02000000> EQUALVERIFY

//Verify commitment input 1 and commitment input 2 are from the same previous transaction ID
EQUALVERIFY

4.4.2.3.2.2 Commitment Transaction Inspection
The witness-provided commitment transaction base bytedata is hashed to match the inspected
commitment input outpoints. Then the whole transaction bytedata is parsed to extract individual
calldata elements within the transaction serialization:

- CONTINUE SLOT 1 -

///////Fetch commitment transaction base bytedata, and make 4 copies
<7> ROLL DUP 2DUP

///////Hash base tx bytedata and compare to commitment input prvtxid
HASH256 <4> ROLL EQUALVERIFY

///////Enforce size 418-bytes
SIZE <418> EQUALVERIFY

//Parse 2nd sequence field and EQUALVERIFY ffffffff
<84> <4> SUBSTR <0xffffffff> EQUALVERIFY

//Parse number of inputs and make sure its 4
<88> <1> SUBSTR <0x04> EQUALVERIFY

//Parse the first output (OP_RETURN)
<133> <81> SUBSTR

//Make sure its an op_return and parse pushdata
DUP <0> <1> SUBSTR <0x6a> EQUALVERIFY <3> <78> SUBSTR

//Parse target flag asset ID and verify
DUP <0> <32> SUBSTR

//Inspect flag holder covenant asset ID and verify the prefix(1)
<0> INSPECTINPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Constrain user call to Target Asset ID
EQUALVERIFY

//Parse calldata to extact method call
DUP <32> <1> SUBSTR

//Parse calldata to extact recipient public key
SWAP DUP <33> <33> SUBSTR

//Parse calldata to extact slippage tolerance
SWAP DUP <66> <8> SUBSTR

//Parse calldata to extact ordering fees
SWAP <74> <4> SUBSTR

4.4.2.3.2.3 Method Call Preparation
A set of preparations made to get the stack ready for final method call cases:

- CONTINUE SLOT 1 -

//Get lower index ordering fees from the stack
FROMALTSTACK

//Get total ordering fees from the stack
FROMALTSTACK

//Make a copy of current-index ordering fees
<2> PICK

//Update total ordering fees
ADD

//Send updated total ordering fees to altstack
TOALTSTACK

//Send lower index ordering fees to altstack
TOALTSTACK

//Make a copy of current ordering fees
DUP

//Make sure current ordering fees is greater than 1 sat
<1> GREATERTHANOREQUAL VERIFY

//Inspect commitment input 1 asset and verify the prefix(1)
<3+N> INSPECTINPUTASSET <0x01> EQUALVERIFY

//Make a copy of the L-BTC asset ID (copying from the script header)
<10> PICK

//Verify commitment input 1 assetID(32) is L-BTC
EQUALVERIFY

//Make a copy of current-index ordering fees and get lower index ordering fees from altstack
DUP FROMALTSTACK

//Make a copy of current-index ordering fees lower-index ordering fees
2DUP

//Compare current-index ordering fees to lower-index ordering fees
LESSTHAN

//If current-index ordering fees is smaller than the lower-index ordering fees
IF

//Ordering is based on a valid fee market. Drop copies of current-index and lower-index ordering fees
2DROP

//If current-index ordering fees is not smaller than the lower-index ordering fees
ELSE

//Both ordering fees must be equal; otherwise, fail. Lexicographical ordering will be enforced.
EQUALVERIFY

//Inspect current-index slot commitment input 1 outpoint
<3+N> INSPECTINPUTOUTPOINT

//Remove vout(4) and outpoint_flag(1) to keep txid(32)
2DROP

//Splice the first 8 bytes of current-index commitment input txid(32)
<8> LEFT

//Inspect lower-index slot commitment input 1 outpoint
<1+N> INSPECTINPUTOUTPOINT

//Remove vout(4) and outpoint_flag(1) to keep txid(32)
2DROP

//Splice the first 8 bytes of lower-index commitment input txid(32)
<8> LEFT

//Enforce lexicographical ordering by comparing the two previous txid(32)
LESSTHAN64 VERIFY

//Drop copies of current-index and lower-index ordering fees
2DROP

ENDIF

//Make a copy of current ordering fees
DUP

//Send the copy of current ordering fees to altstack for higher-index slot comparisons
TOALTSTACK

//Add base fee 1200 sats to current ordering fees, making up total tx fees
<1200> ADD

//Convert total tx fees to LE64
SCIPTNUMTOLE64

//Inspect commitment input 1 L-BTC value and verify the prefix(1)
<3+N> INSPECTINPUTVALUE <0x01> EQUALVERIFY

SWAP

//Subtract total L-BTC provided from tx fees, making up available user L-BTC amount remaining
SUB64

//Make sure available user L-BTC remaining is greater than 500 sats
DUP <500> SCIPTNUMTOLE64 GREATERTHAN64 VERIFY

//Get current-index ordering fees from altstack
FROMALTSTACK

//Get up-to-latest-index total accumulated fees from altstack
FROMALTSTACK

//Get current-index ordering fees from altstack
FROMALTSTACK

//Update total accumulated fees by adding the current-index base fee
<1200> ADD

//Get LP token pool supply from altstack
FROMALTSTACK

//Get Token pool supply from altstack
FROMALTSTACK

//Get L-BTC pool supply from altstack
FROMALTSTACK

//Calculate P2WSH witness program given receipent public key
<0x0401000000b221> <8> ROLL <Recipient Public Key> <0xac> CAT CAT SHA256

//Inspect commitment output1 scriptPubkey
<3+N> INSPECTOUTPUTSCRIPTPUBKEY

//Constrain commitment output1 witness version to v0:
<0> EQUALVERIFY

//Constrain commitment output1 witness program to calculated witness program
EQUALVERIFY

//Fetch method call extracted from calldata
<7> ROLL

//If the method call is either 1, 2, or 3:
DUP <3> LESSTHANOREQUAL

IF

//Inspect settlement output 2 asset
<4+N> INSPECTOUTPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Verify the assetID(32) is L-BTC
<14> PICK EQUALVERIFY

//Inspect settlement output 2 value
<4+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Verify the value(8) is 0
<0> SCIPTNUMTOLE64 EQUALVERIFY

//Verify scriptPubKey is an empty OP_RETURN
INSPECTOUTPUTSCRIPTPUBKEY <-1> EQUALVERIFY <0x6a0100> SHA256 EQUALVERIFY

ENDIF

4.4.2.3.2.4 Method Call Cases
One of four code blocks is executed based on the method call parsed from the calldata:

- CONTINUE SLOT 1 -

//If the method call is 1:
DUP <1> EQUAL IF DROP
- BEGIN CASE 1 : Swap L-BTC for Token -

.

.
- END CASE 1 : Swap L-BTC for Token -

ENDIF

//If the method call is 2:
DUP <2> EQUAL IF DROP
- BEGIN CASE 2 : Swap Token for L-BTC -

.

.
- END CASE 2 : Swap Token for L-BTC -
ENDIF

//If the method call is 3:
DUP <3> EQUAL IF DROP
- BEGIN CASE 3 : Add Liquidity -

.

.
- END CASE 3 : Add Liquidity -
ENDIF

//If the method call is 4:
DUP <4> EQUAL IF DROP
- BEGIN CASE 4 : Remove Liquidity -

.

.
- END CASE 4 : Remove Liquidity -
ENDIF

- END SLOT 1 -
.
.
.
.

- BEGIN SLOT N -
.
.

- END SLOT N -

- END SCRIPT BODY -

4.4.2.3.2.4.1 Swap L-BTC for Token
A swap-in L-BTC amount, a base fee of 1200, an ordering fee varying from 1-2147483647, and a
dust 650 sats are supplied in the commitment transaction. The pool transaction constrains
settlement output 1 to the Token swap-out amount based on the CPMM formula in a success case
and to the initial L-BTC swap-in amount in a slippage failure case.

Inputs Asset Amount

Commitment Input 1 L-BTC Swap-in Amount + Base Fee (1200) + Ordering Fee (1-2147483647)

Commitment Input 2 L-BTC Dust (650)

Outputs (Success) Asset Amount

Settlement Output 1 Token Swap-out Amount

Settlement Output 2 L-BTC 0 [OP_RETURN]

Outputs (Out of Slippage) Asset Amount

Settlement Output 1 L-BTC Swap-in Amount

Settlement Output 2 L-BTC 0 [OP_RETURN]

Based on parameters;

I. is a state of L-BTC pool supply held by the main covenant𝑠𝑙

II. is a state of Token pool supply held by the Token holder covenant𝑠𝑡

III. is the swap-in L-BTC amount that the user commits𝑠𝑖

IV. is the liquidity provider fee charged from the swap-in amount𝑙𝑓

V. is the swap-out Token amount that the user receives𝑠𝑜

VI. is the Token slippage limit𝑠

1. A %0.2 LP fee is calculated =𝑙𝑓 𝑠𝑖
500

2. New tradable swap-in amount 𝑠𝑖' = 𝑠𝑖 − 𝑙𝑓
3. L-BTC pool supply for constant 𝑠𝑙' = 𝑠𝑙 − 𝑠𝑖
4. L-BTC pool supply for constant (downgraded 36x) =𝑠𝑙'' 𝑠𝑙'

36

5. Token pool supply downgraded (downgraded 4194304x) =𝑠𝑡' 𝑠𝑡
4194304

6. Tradable L-BTC swap-in amount downgraded (downgraded 36x) =𝑠𝑖'' 𝑠𝑖'
36

7. The new state of Token pool supply =𝑠𝑡'' 𝑠𝑙''*𝑠𝑡'
𝑠𝑖''

8. Final Token pool supply (magnified 4194304x) 𝑠𝑡''' = 𝑠𝑡'' * 4194304
9. Token user received 𝑠𝑜 = 𝑠𝑡 − 𝑠𝑡'''
10. Final L-BTC pool supply 𝑠𝑙''' = 𝑠𝑡 + 𝑠𝑖
11. Success if 𝑠 > 𝑠𝑜'

- BEGIN CASE 1 : Swap L-BTC for Token - - - - - - - - - - - - - - - - - - -

//Inspect commitment input 2 asset
<4+N> INSPECTINPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//verify the assetID(32) is L-BTC
<13> PICK EQUALVERIFY

//Inspect commitment input 2 value
<4+N> INSPECTINPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Verify the value(8) is dust
<650> SCIPTNUMTOLE64 EQUALVERIFY

//Fetch commitment input 1 tradable L-BTC supply
<5> ROLL

//Make two copies send one to altstack
DUP DUP TOALTSTACK

//Calculate LP fee %0.2
<500> SCIPTNUMTOLE64 DIV64

//Verify no overflow and remove remainder
VERIFY NIP

//Subtract LP fees from the L-BTC amount and verify no overflow
SUB64 VERIFY

//Make a copy of the total L-BTC pool supply
<1> PICK

//Add existing pool supply with new pool supply to calculate new token pool supply and verify no overflow
ADD64 VERIFY

//Make a copy of the total L-BTC pool supply and downgrade precision (Minimum unit to 36 sats)
<1> PICK <36> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY

//Make a copy of the total Token pool supply and downgrade precision (Minimum unit to 4194304)
<3> PICK <4194304> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY

//Multiply the two downgraded pool supply to calculate the constant value and verify no overflow
MUL64 VERIFY

//Make a copy of L-BTC pool supply for constant and downgrade precision (Minimum unit to 36 sats)
<1> PICK <36> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY

//Divide constant with L-BTC pool supply to calculate the new Token pool supply and verify no overflow
DIV64 VERIFY

//Magnify the new Token pool supply and verify no overflow
<4194304> SCIPTNUMTOLE64 MUL64

//Verify no overflow
VERIFY

SWAP

//Make a copy of the previous Token pool supply
<3> PICK

//Make a copy of the new Token pool supply
<2> PICK

//Subtract the previous Token pool supply with the new token pool supply, making Tokens user received
SUB64

//Verify no overflow
VERIFY

//Remove L-BTC pool supply for constant
NIP

//Make a copy of L-BTC initial pool supply
<2> PICK

//Get tradable L-BTC supply from altstack, make one copy, and sand the copy to altstack
FROMALTSTACK DUP TOALTSTACK

//Add initial L-BTC pool supply with tradable user L-BTC supply to calculate the final L-BTC pool supply
ADD64

//Verify no overflow
VERIFY

SWAP

//Fetch slippage limit parsed from calldata
<8> ROLL

//Make a copy of the amount received
PICK

//Check slippage overflow
GREATERTHANOREQUAL64 2DROP <1> <1> EQUAL

//If the slippage is not overflowed:
IF

//Inspect settlement output 1 asset
<3+N> INSPECTOUTPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Get Token asset ID
<13> PICK

//Verify that settlement output 1 holds the Token assetID(32)
EQUALVERIFY

//Inspect settlement output 1 amount and verify the prefix(1)
<3+N> INSPECTOUTPUTVALUE <0x01> EQUALVERIFY

//Verify that settlement output 1 holds the same value(8)
EQUALVERIFY

//Fetch old token pool supplies and drop
<3> ROLL <3> ROLL 2DROP

//If the slippage is overflow
ELSE

//Inspect settlement output 1 asset
<3+N> INSPECTOUTPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Make a copy of Token asset ID and verify that settlement output 1 holds the L-BTC assetID(32)
<14> PICK EQUALVERIFY

//Drop overflown token received amount and the two new failed pool supply
DROP 2DROP

//Get tradable user L-BTC amount from altstack
FROMALTSTACK

//Inspect settlement output 1 amoun
<3+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Verify that settlement output 1 holds the same value(8)
EQUALVERIFY

ENDIF

//Send top 5 stack elements to altstack for further higher index slot interpretations
TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK

- END CASE 1 : Swap L-BTC for Token -

4.4.2.3.2.4.2 Swap Token for L-BTC
A swap-in Token amount, a base fee 1200, an ordering fee varying from 1-2147483647, and a
dust 650 sats are supplied in the commitment transaction. The pool transaction constrains
settlement output 1 to the L-BTC swap-out amount based on the CPMM formula in a success
case and to the initial Token swap-in amount in a slippage failure case.

Inputs Asset Amount

Commitment Input 1 L-BTC Base Fee (1200) + Ordering Fee (1-2147483647) + Dust (650)

Commitment Input 2 Token Swap In Amount

Outputs (Success) Asset Amount

Settlement Output 1 L-BTC Swap Out Amount

Settlement Output 2 L-BTC 0 [OP_RETURN]

Outputs (Out of Slippage) Asset Amount

Settlement Output 1 Token Swap In Amount

Settlement Output 2 L-BTC 0 [OP_RETURN]

Based on parameters;

I. is a state of L-BTC pool supply held by the main covenant𝑠𝑙

II. is a state of Token pool supply held by the Token holder covenant𝑠𝑡

III. is the swap-in Token amount that the user commits𝑠𝑖

IV. is the liquidity provider fee charged from the swap-in amount𝑙𝑓

V. is the swap-out L-BTC amount that the user receives𝑠𝑜

VI. is the L-BTC slippage limit𝑠

1. A %0.2 LP fee is calculated =𝑙𝑓 𝑠𝑖
500

2. New tradable swap-in amount 𝑠𝑖' = 𝑠𝑖 − 𝑙𝑓
3. Token pool supply for constant 𝑠𝑡' = 𝑠𝑡 − 𝑠𝑖
4. Token pool supply for constant (downgraded 4194304x) =𝑠𝑡'' 𝑠𝑡'

4194304

5. L-BTC pool supply downgraded (downgraded 36x) =𝑠𝑙' 𝑠𝑙
36

6. Tradable Token swap-in amount downgraded (downgraded 4194304x) =𝑠𝑖'' 𝑠𝑖'
4194304

7. The new state of L-BTC pool supply =𝑠𝑙'' 𝑠𝑡''*𝑠𝑙'
𝑠𝑖''

8. Final L-BTC pool supply (magnified 36x) 𝑠𝑙''' = 𝑠𝑙'' * 36
9. L-BTC user received 𝑠𝑜 = 𝑠𝑙 − 𝑠𝑙'''
10. Final Token pool supply 𝑠𝑡''' = 𝑠𝑡 + 𝑠𝑖
11. Success if 𝑠 > 𝑠𝑜

- BEGIN CASE 2 : Swap Token for L-BTC - - - - - - - - - - - - - - - - - - -

//Fetch commitment input 1 tradable L-BTC supply
<5> ROLL

//Push a dust value 650 onto stack and verify that commitment input 1 holds dust L-BTC
<650> SCIPTNUMTOLE64 EQUALVERIFY

//Inspect commitment input 2 asset and verify the prefix(1)
<4+N> INSPECTINPUTASSET <0x01> EQUALVERIFY

//Get Token asset ID and verify that commitment input 2 holds the Token assetID(32)
<11> PICK EQUALVERIFY

//Inspect commitment input 2 amount and verify the prefix(1)
<4+N> INSPECTINPUTVALUE <0x01> EQUALVERIFY

//Make two copies of Token swap-in amount and send one to altstack
DUP DUP TOALTSTACK

//Calculate LP fee %0.2
<500> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY

//Remove remainder
NIP

//Subtract LP fees from the Token amount and verify no overflow
SUB64 VERIFY

//Make a copy of the total Token pool supply
<2> PICK

//Add existing pool supply with new pool supply to calculate new L-BTC pool supply
ADD64 2DROP

//Verify no overflow
VERIFY

//Make a copy of the total L-BTC pool supply and downgrade precision (Minimum unit to 36 sats)
<1> PICK <36> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY

//Make a copy of total Token pool supply downgrade precision. (Minimum unit to 4194304)
<3> PICK <4194304> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY

//Multiply the two downgraded pool supply to calculate the constant value
MUL64

//Verify no overflow
VERIFY

//Make a copy of Token pool supply for constant and downgrade precision (Minimum unit to 4194304)
<1> PICK <4194304> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY
//Divide constant with Token pool supply to calculate the new L-BTC pool supply
DIV64

//Verify no overflow
VERIFY

//Magnify the new L-BTC pool supply
<36> SCIPTNUMTOLE64 MUL64

//Verify no overflow
VERIFY

SWAP

//Make a copy of the previous pool L-BTC supply
<2> PICK

//Make a copy of the new pool L-BTC supply
<2> PICK

//Subtract the pool supply states to calculate the L-BTC user received
SUB64

//Verify no overflow
VERIFY

//Remove Token pool supply for constant
NIP

//Make a copy of Token initial pool supply
<3> PICK

//Get tradable Token supply from altstack, make one copy, and send the copy to altstack
FROMALTSTACK DUP TOALTSTACK

//Add initial Token pool supply with tradable user Token supply to calculate the final Token pool supply
ADD64

//Verify no overflow
VERIFY

SWAP

//Fetch slippage limit parsed from calldata
<8> ROLL

//Make a copy of the amount received
<1> PICK

//Check slippage overflow
GREATERTHANOREQUAL64 2DROP <1> <1> EQUAL

//If the slippage is not overflow
IF

//Inspect settlement output 1 asset and verify the prefix(1)
<3+N> INSPECTOUTPUTASSET <0x01> EQUALVERIFY

//Make a copy of Token asset ID and
<14> PICK

//Verify that settlement output 1 holds the L-BTC assetID(32)
EQUALVERIFY

//Inspect settlement output 1 amount
<3+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Verify that settlement output 1 holds the same value(8)
EQUALVERIFY

//Fetch old token pool supplies and drop
<3> ROLL <3> ROLL 2DROP SWAP

//If the slippage is overflow
ELSE

//Inspect settlement output 1 asset
<3+N> INSPECTOUTPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Get Token asset ID and verify that settlement output 1 holds the L-BTC assetID(32)
<13> PICK EQUALVERIFY

//Drop overflown L-BTC received amount and the two new failed pool supply
DROP 2DROP

//Get tradable user Token amount from altstack
FROMALTSTACK

//Inspect settlement output 1 amount
<3+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Verify that settlement output 1 holds the same value(8)
EQUALVERIFY

ENDIF

//Send top 5 stack elements to altstack for further higher index slot interpretations
TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK

- END CASE 2 : Swap Token for L-BTC -

4.4.2.3.2.4.3 Add Liquidity
An L-BTC supply, a Token supply, a base fee of 1200, an ordering fee varying from
1-2147483647, and a dust 650 sats are supplied in the commitment transaction. The pool
transaction constrains settlement output 1 to give the user liquidity shares (LP tokens)
proportional to liquidity provided.

Inputs Asset Amount

Commitment Input 1 L-BTC Supply + Base Fee (1200) + Ordering Fee (1-2147483647) + Dust (650)

Commitment Input 2 Token Supply

Outputs Asset Amount

Settlement Output 1 LP Liquidity Share

Settlement Output 2 L-BTC 0 [OP_RETURN]

Based on parameters;

I. is a state of pool L-BTC supply held by the main covenant𝑝𝑙

II. is a state of pool Token supply held by the Token holder covenant𝑝𝑡

III. is a state of pool LP supply held by the LP holder covenant𝑝𝑙𝑝

IV. is the max pool LP supply, set to 5000000000000000𝑚𝑙𝑝

V. is a state of occupied LP supply𝑜𝑙𝑝

VI. is the user-added L-BTC supply𝑢𝑙

VII. is the user-added Token supply𝑢𝑡

VIII. is the LP tokens user receives𝑢𝑙𝑝

IX. is the L-BTC addition ratio𝑟𝑙

X. is the Token addition ratio𝑟𝑡

1. Existing pool L-BTC supply magnified 1000x =𝑝𝑙' 𝑝𝑙 * 1000

2. Magnified pool L-BTC supply divided to added user L-BTC supply =𝑟𝑙 𝑝𝑙'
𝑢𝑙

3. The current pool Token supply magnified 1000x =𝑝𝑡' 𝑝𝑡 * 1000

4. Magnified pool Token supply divided to added user Token supply =𝑟𝑙 𝑝𝑡'
𝑢𝑡

5. Total occupied LP tokens =𝑜𝑙𝑝 𝑚𝑙𝑝 − 𝑝𝑙𝑝

6. LP tokens user received =𝑢𝑙𝑝 𝑜𝑙𝑝
𝑚𝑎𝑥(𝑟𝑙, 𝑟𝑡) * 1000

7. New state of occupied LP supply =𝑜𝑙𝑝' 𝑜𝑙𝑝 + 𝑢𝑙𝑝
8. New state of pool LP supply =𝑝𝑙𝑝' 𝑝𝑙𝑝' − 𝑢𝑙𝑝

- BEGIN CASE 3 : Add Liquidity -

//Push 5000000000000000 max LP pool supply
<5000000000000000>

//Make a copy of the current LP pool supply
<3> PICK

//Subtract max LP pool supply with current LP pool supply to get the current LP used
SUB64

//Make a copy of the current L-BTC pool supply
<1> PICK

//Push int 1000 and convert to LE64
<1000> SCIPTNUMTOLE64

//Magnify current L-BTC pool supply 1000 times
MUL64

//Verify no overflow
VERIFY

//Fetch available user L-BTC supply
<7> ROLL

//Push int 650 and convert to LE64
<650> SCIPTNUMTOLE64

//Subtract 650 from available user L-BTC supply, make one copy and send the copy to altstack
SUB64 DUP TOALTSTACK

//Divide magnified L-BTC supply with available user L-BTC supply to calculate the ratio
DIV64

//Verify no overflow
VERIFY

//Make a copy of the current Token pool supply
<3> PICK

//Push int 1000 and convert to LE64
<1000> SCIPTNUMTOLE64

//Magnify current Token pool supply 10000 times and verify no overflow
VERIFY

//Inspect commitment input 2 asset
<4+N> INSPECTINPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Make a copy of Token asset ID
<14> PICK

//Verify that commitment input 2 holds the Token assetID(32)
EQUALVERIFY

//Inspect commitment input 2 amount
<4+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Make a copy of the commitment input 2 amount and send the copy to altstack
DUP TOALTSTACK

//Divide magnified Token pool supply with available user Token supply to calculate the second ratio
DIV64

//Verify no overflow
VERIFY

//Duplicate the two ratios
2DUP

//Compare the two ratios
GREATERTHANOREQUAL64

IF

//Drop the smaller ratio (last stack element)
DROP
ELSE

//Drop the smaller ratio (second to last stack element)
NIP

ENDIF

//Divide current LP with ratio to calculate LP amount user received
DIV64

//Verify no overflow
VERIFY

//Push int 1000 and convert to LE64
<1000> SCIPTNUMTOLE64

//Apply the same 1000x magnification this side to get LP tokens user received
MUL64

//Verify no overflow
VERIFY

//Inspect LP token asset ID
<2> INSPECTOUTPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Inspect settlement output 1 asset ID
<3+N> INSPECTOUTPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Constrain settlement output 1 to LP token asset ID
EQUALVERIFY

//Make a copy of LP tokens user received
DUP

//Inspect settlement output 1 amount
<4+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Make sure user receives deserved LP tokens
EQUALVERIFY

//Fetch previous LP pool supply
<3> ROLL

SWAP

//Update new LP pool supply and verify no overflow
SUB64 VERIFY

//Fetch previous Token pool supply
<2> ROLL

//Get Token user supply from altstack
FROMALTSTACK

//Update new Token pool supply
ADD64

//Verify no overflow
VERIFY

//Fetch previous L-BTC pool supply
<2> ROLL

//Get user L-BTC supply from altstack
FROMALTSTACK

//Update new L-BTC pool supply
ADD64

//Verify no overflow
VERIFY

//Send top 5 stack elements to altstack for further higher index slot interpretations
TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK

//Drop slippage limit
DROP

- END CASE 3 : Add Liquidity -

4.4.2.3.2.4.4 Remove Liquidity
A base fee of 1200, an ordering fee varying from 1-2147483647, a dust 650 sats, and LP tokens
are supplied in the commitment transaction. The pool transaction redeems LP tokens and
constrains settlement output 1 and 2 to give the user their proportional liquidity.

Inputs Asset Amount

Commitment Input 1 L-BTC Base Fee (1200) + Ordering Fee (1-2147483647) + Dust (650)

Commitment Input 2 LP Liquidity Share

Outputs Asset Amount

Settlement Output 1 L-BTC Supply

Settlement Output 2 Token Supply

Based on parameters;

I. is a state of pool L-BTC supply held by the main covenant𝑝𝑙

II. is a state of pool Token supply held by the Token holder covenant𝑝𝑡

III. is a state of pool LP supply held by the LP holder covenant𝑝𝑙𝑝

IV. is the max pool LP supply, set to 5000000000000000𝑚𝑙𝑝

V. is a state of occupied LP supply𝑜𝑙𝑝

VI. is the amount of LP tokens the user redeems𝑢𝑙𝑝

VII. is the amount of LP redemption ratio𝑟𝑙𝑝

VIII. is the L-BTC amount user receives𝑢𝑙

IX. is the Token amount user receives𝑢𝑡

1. Total occupied LP tokens =𝑜𝑙𝑝 𝑚𝑙𝑝 − 𝑝𝑙𝑝
2. Total occupied LP tokens is magnified 1000x =𝑜𝑙𝑝' 𝑜𝑙𝑝 * 1000

3. LP redemption ratio =𝑟𝑙𝑝 𝑜𝑙𝑝'
𝑢𝑙𝑝

4. L-BTC amount user receives =𝑢𝑙 𝑝𝑙
𝑟𝑙𝑝 * 1000

5. Token amount the user receives =𝑢𝑡 𝑝𝑡
𝑟𝑙𝑝 * 1000

6. New occupied LP token supply 𝑜𝑙𝑝'' = 𝑜𝑙𝑝 − 𝑢𝑙𝑝
7. New pool LP token supply 𝑝𝑙𝑝' = 𝑝𝑙𝑝 + 𝑢𝑙𝑝
8. New pool L-BTC supply 𝑝𝑙' = 𝑝𝑙 − 𝑢𝑙
9. New pool Token supply 𝑝𝑡' = 𝑝𝑡 − 𝑢𝑡

- BEGIN CASE 4 : Remove Liquidity -

//Fetch commitment input 1 tradable L-BTC supply
<5> ROLL

//Push a dust value 650 onto stack
<650> SCIPTNUMTOLE64

//Verify that commitment input 1 holds dust L-BTC
EQUALVERIFY

//Inspect commitment input 2 asset and verify the prefix(1)
<4+N> INSPECTINPUTASSET <0x01> EQUALVERIFY

//Get LP token asset ID and verify the prefix(1)
<2> INSPECTOUTPUTASSET <0x01> EQUALVERIFY

//Verify that commitment input 2 holds the LP assetID(32)
EQUALVERIFY

//Push 5000000000000000 max LP pool supply
<5000000000000000>

//Make a copy of the current LP pool supply
<3> PICK

//Subtract max LP pool supply with current LP pool supply to get the current LP used
SUB64

//Verify no overflow
VERIFY

//Push int 1000 and convert to LE64
<1000> SCIPTNUMTOLE64

//Magnify current lp pool supply 10000 times and verify no overflow
MUL64 VERIFY

//Inspect commitment input 2 amount and verify the prefix(1)
<4+N> INSPECTINPUTVALUE <0x01> EQUALVERIFY

//Make one copy and send to altstack
DUP TOALTSTACK

//Calculate the LP ratio and verify no overflow
DIV64 VERIFY

//Make a copy of the current L-BTC pool supply
<1> PICK

//Make a copy of LP ratio
<1> PICK

//Divide current L-BTC pool supply with LP ratio to calculate L-BTC user received and verify no overflow
DIV64 VERIFY

//Push int 1000 and convert to LE64
<1000> SCIPTNUMTOLE64

//Apply the same 1000x magnification on this side and verify no overflow
MUL64 VERIFY

//Make one copy and send to altstack
DUP TOALTSTACK

//Inspect settlement output 1 asset
<3+N> INSPECTOUTPUTASSET

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Get L-BTC asset ID
<14> PICK

//Verify that settlement output 1 holds the L-BTC assetID(32)
EQUALVERIFY

//Inspect settlement output 1 amount
<3+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Make sure user gets deserved L-BTC amount
EQUALVERIFY

//Make a copy of the current L-BTC pool supply
<2> PICK

SWAP

//Divide current Token pool supply with LP ratio to calculate Token amount user received
DIV64

//Verify no overflow
VERIFY

//Push int 1000 and convert to LE64
<1000> SCIPTNUMTOLE64

//Apply the same 1000x magnification on this side and verify no overflow
MUL64 VERIFY

//Make one copy and send to altstack
DUP TOALTSTACK

//Inspect settlement output 2 asset and verify the prefix(1)
<4+N> INSPECTOUTPUTASSET

//Get Token asset ID
<12> PICK

//Verify that settlement output 1 holds the Token assetID(32)
EQUALVERIFY

//Inspect settlement output 2 amount
<4+N> INSPECTOUTPUTVALUE

//Verify the prefix(1)
<0x01> EQUALVERIFY

//Make sure user gets deserved Token amount
EQUALVERIFY

//Get Token user received
FROMALTSTACK

//Get L-BTC user received
FROMALTSTACK

//Get LP tokens user sent
FROMALTSTACK

//Fetch previous LP pool supply
<5> ROLL

//Update new LP pool supply and verify no overflow
ADD64 VERIFY

//Fetch previous Token pool supply
<4> ROLL

//Fetch Token user received
<3> ROLL

//Update new Token pool supply and verify no overflow
SUB64 VERIFY

//Fetch previous L-BTC pool supply
<3> ROLL

//Fetch L-BTC user received
<3> ROLL

//Update new L-BTC pool supply and verify no overflow
SUB64 VERIFY

//Inspect settlement output 1 witness program and verify v0 witnes version
//<N+3> INSPECTOUTPUTSCRIPTPUBKEY <0> EQUALVERIFY

//Inspect settlement output 2 witness program and verify v0 witnes version
<N+4> INSPECTOUTPUTSCRIPTPUBKEY <0> EQUALVERIFY

//Make settlement output 1 and settlement output 2 witness programs are equal
EQUALVERIFY

//Send top 5 stack elements to altstack for further higher index slot interpretations
TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK TOALTSTACK

//Drop slippage limit
DROP

- END CASE 4 : Remove Liquidity -

4.4.2.3.3 Witness Script Footer
The witness script footer is a fixed-size witness script making the last part of the maing covenant
witness script.

- BEGIN SCRIPT FOOTER -

//Get latest-index leaf tx fees
FROMALTSTACK

//Get total leaf tx fees
FROMALTSTACK

//Get latest-state pool LP supply
FROMALTSTACK

//Get latest-state pool Token supply
FROMALTSTACK

//Get latest-state pool L-BTC supply
FROMALTSTACK

//Inspect L-BTC amount the main covenant holds and verify the prefix(1)
<3> INSPECTINPUTVALUE <0x01> EQUALVERIFY

//Constrain main covenant L-BTC pool amount to latest state L-BTC supply
EQUALVERIFY

//Inspect Token amount the main covenant holds and verify the prefix(1)
<1> INSPECTINPUTVALUE <0x01> EQUALVERIFY

//Constraint Token covenant L-BTC pool amount to latest state Token supply
EQUALVERIFY

//Inspect LP amount the LP holder covenant holds and verify the prefix(1)
<1> INSPECTINPUTVALUE <0x01> EQUALVERIFY

//Constrain LP covenant LP pool amount to latest state LP supply
EQUALVERIFY

//Convert total fees paid to LE64
SCIPTNUMTOLE64

//Calculate fees paid as tx fees and verify no overflow
INSPECTNUMINPUTS <4> SUB VERIFY

//Multiply the number of inputs with total fees paid and verify no overflow
MUL64 VERIFY

//Divide the result with the max number of inputs to calculate the total tx fees paid
<64> SCIPTNUMTOLE64 DIV64

//Verify no overflow
VERIFY

//Get the fee output index
INSPECTNUMOUTPUTS <8> <1> SUB

/Make a copy of fee output index
DUP

//Inspect fee output value and verify the prefix(1)
INSPECTOUTPUTVALUE<0x01> EQUALVERIFY

//Constrain tx fees
EQUALVERIFY

//Get the service fee output index
INSPECTNUMOUTPUTS <8> <2> SUB

//Inspect service fee output asset and verify the prefix(1)
INSPECTOUTPUTASSET <0x01> EQUALVERIFY

//Make a copy of the L-BTC asset ID
<8> PICK

//Constrain service fee output asset ID to L-BTC
EQUALVERIFY

//Inspect service fee output witness program
INSPECTOUTPUTSCRIPTPUBKEY

//Constrain to witness version 0
<0> EQUALVERIFY

//Constrain witness program 1ef08948ed902a517d90ef6955c66c183a444afd
<0x1ef08948ed902a517d90ef6955c66c183a444afd> EQUALVERIFY

//Empty stack
2DROP 2DROP 2DROP <1>

- END SCRIPT FOOTER -

5. Precision Downgrade
Applying arithmetic operations over two 64-bit signed asset values to calculate a constant value
overflows the operation. To avoid this, inspected L-BTC and Token amounts are downgraded to fit
in the square root of the max 64-bit signed integer .9223372036854775807 = 3037000499

Without a downgrade, a pool can store up to only 30.37000499 L-BTC and 30.37000499 USDT.
By downgrading L-BTC value 36 times and Token value 4194304 times, a Bitmatrix pool can store
up to 1,093.32017964 L-BTC and 127,381,033.40957697 USDT. The tradeoff counts a single
L-BTC unit for 36 sats and a minimum USDT unit for 4 cents, lacking the arithmetic sensitivity at a
negligible margin. More than one AMM pool for the same pair can be created if one pool hits the
max liquidity limit (1,093 L-BTC).

